#PBZOJ4459. 丢番图

丢番图

题目描述

丢番图是亚历山大时期埃及著名的数学家。他是最早研究整数系数不定方程的数学家之一。
为了纪念他,这些方程一般被称作丢番图方程。最著名的丢番图方程之一是x^N+y^n=z^N。费马
提出,对于N>2,x,y,z没有正整数解。这被称为“费马大定理”,它的证明直到最近才被安德
鲁·怀尔斯(AndrewWiles)证明。
考虑如下的丢番图方程:
1/x+1/y=1/n(x,y,n属于N+)                      (1)
小G对下面这个问题十分感兴趣:对于一个给定的正整数n,有多少种本质不同的解满足方
程(1)?例如n=4,有三种本质不同(x≤y)的解:
1/5+1/20=1/4
1/6+1/12=1/4
1/8+1/8=1/4
显然,对于更大的n,没有意义去列举所有本质不同的解。你能否帮助小G快速地求出对于
给定n,满足方程(1)的本质不同的解的个数?

输入格式

一行,仅一个整数n(1<=N<=10^14)

输出格式

一行,输出对于给定整数n,满足方程(1)的本质不同的解的个数。

4
3