#PBZOJ3925. 地震后的幻想乡

地震后的幻想乡

题目描述

 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们。 这不,幻想乡突然发生了地震,所有的道路都崩塌了。现在的首要任务是尽快让幻想乡的交通体系重新建立起来。幻想乡一共有n个地方,那么最快的方法当然是修复n-1条道路将这n个地方都连接起来。 幻想乡这n个地方本来是连通的,一共有m条边。现在这m条边由于地震的关系,全部都毁坏掉了。每条边都有一个修复它需要花费的时间,第i条边所需要的时间为ei。地震发生以后,由于幽香是一位人生经验丰富,见得多了的长者,她根据以前的经验,知道每次地震以后,每个ei会是一个0到1之间均匀分布的随机实数。并且所有ei都是完全独立的。 现在幽香要出发去帮忙修复道路了,她可以使用一个神奇的大魔法,能够选择需要的那n-1条边,同时开始修复,那么修复完成的时间就是这n-1条边的ei的最大值。当然幽香会先使用一个更加神奇的大魔法来观察出每条边ei的值,然后再选择完成时间最小的方案。 幽香在走之前,她想知道修复完成的时间的期望是多少呢? 

输入格式

第一行两个数n,m,表示地方的数量和边的数量。其中点从1到n标号。 
接下来m行,每行两个数a,b,表示点a和点b之间原来有一条边。 
这个图不会有重边和自环。 

输出格式

一行输出答案,四舍五入保留6位小数。 
5 4
1 2
1 5
4 3
5 3
0.800000

数据范围与约定

提示: 


(以下内容与题意无关,对于解题也不是必要的。) 

对于n个[0,1]之间的随机变量x1,x2,...,xn,第k小的那个的期望值是k/(n+1)。 


样例解释: 

对于第一个样例,由于只有4条边,幽香显然只能选择这4条,那么答案就是4条边的ei中最大的数的期望,由提示中的内容,可知答案为0.8。 


数据范围: 

对于所有数据:n<=10, m=1。 

对于15%的数据:n<=3。 

另有15%的数据:n<=10, m=n。 

另有10%的数据:n<=10, m=n(n-1)/2。 

另有20%的数据:n<=5。 

另有20%的数据:n<=8。