#PBZOJ3263. 经销商问题
经销商问题
题目描述
CTY神犇成为了著名品牌的一个经销商,由于经营有方,他创造了商品销售上的奇迹——就是进多少卖多少。为了
可以获得更多的利润,他决定从其他经销商那里进货。进货的要遵循以下规则:
1.有一个顶级经销商,他有无限的库存,他的出货价总是恒定的。
2.其他的经销商只能间接或直接从顶级经销商进货,而且一个经销商向其他经销商进货的量应等于向其他经销商出货
的量(即假设经销商都只会把商品卖给别的经销商)(顶级经销商和CTY神犇例外)。
3.经销商之间有单向的买卖关系,一个经销商v会向u要求进货,当且仅当存在u->v的单向买卖关系,同理,u会向v出
货也是要求当且仅当存在u->v的单向买卖关系。
4.代理一个产品最主要的就是获利,一个经销商将商品卖个另一个经销商时会以成本价上浮x%的价格卖给购买方(例
外的是顶级经销商有着固定的出货价,他的出货价不会随着进货价而变动,或者说因为他就是厂家,他的成本价是
一定的,而且他会不加价的买给其他经销商)。由于经销商之间亲密程度不同,所以每一条单向买卖关系的加价幅
度(即x%)不一定相同,而且对于一个单向买卖关系而言,经销商ui最多愿意卖给vi的商品数为ci。
根据以上规则,CTY神犇想知道他最多可以拿到多少的商品,而由于售价是一定的,CTY神犇想要以尽量低的总成本
购进尽量多的商品。他发现经销商的关系有点小复杂,编程解决又太水了,所以他决定把这个简单的任务交给你。
输入格式
第一行n,m,s表示共有n个经销商,m条单向买卖关系,顶级经销商的出货价格为s
(其中顶级经销商的编号为1,CTY神犇的编号为n)
接下来m行,每行4个正整数;u, v, c,x表示经销商u和v之间存在最多销售c和加价x%的单向买卖关系。
根据题意,输入数据保证顶级经销商卖给其他经销商的价格总是恒定的,即xi=0。
数据保证没有重边。
n<=1800,m<=n * (n - 1) / 2,0<=x<=100
输出格式
第一行一个数sum,表示最多的进货量。
第二行一个数cost,表示获得最多进货量的最小成本。
进货成本精确到一位小数。
无法进货时输出:
0
0.0
3 3 5
1 2 4 0
2 3 3 100
1 3 3 0
6
45.0