#PBZOJ1953. 神奇的K线
神奇的K线
题目描述
小明爱上了炒股。经过近段时间的观察和整理,他发现了如果一个股
票出现了某种形态的k线,那么这个股票不久之后一定会大涨。小明
想利用这种神奇的k线来做一个股票软件。他将一条k线用整数序列a
来表示,并规定当且仅当a[i+1]-a[i]=p[i]时,这条k线是一条神奇
的k线。但是事情总不是一帆风顺的,小明发现许多k线不是神奇的,
但之后也能大涨。不过他发现这些k线都和神奇的k线很接近。为了进
一步扩展神奇的k线的用途,小明定义了两条k线b和a的差异度: 将b
中某一个元素修改成任意值的代价为cost1,将b中某一个元素删除的
代价为cost2。将b修改成a的前缀的最小的代价和就是b和a的差异度
。这里的前缀的定义有点特别,假设b的长度为m,b是a的前缀当且仅
当b[i+1]-b[i]=a[i+1]-a[i](1<=i
输入格式
第一行三个正整数n,cost1,cost2。
n表示给出的k线a的长度,cost1和cost2的含义如题。
第二行n-1个整数,依次表示p[1]到p[n-1],含义如题。
第三行n个整数,依次表示给出的k线a中的n个元素。
n<=1500
cost1,cost2<=1000000
p中每个元素的绝对值均<=1000
a中每个元素的绝对值均<=1000000
输出格式
一个数,a和神奇的k线的差异度。
8 1 2 1 2 3 4 5 6 7 0 1 999 6 10 -999 15 21
3 【样例解释】 将999改为3,删去-999,得到序列0 1 3 6 10 15 21。不存在代价更 小的方案。